Answer
a) After performing the algorithm the answer is $J=4$
Work Step by Step
a)
Perform the steps and keep track of the values $I, J$ and $R$
$\bullet$ Let $I=32$ and $J=20 \quad \quad I=32 ; J=20 ; R=0$
$\bullet 32$ divided by 20 leaves us with $R=12$ as a remainder $\quad \quad I=32 ; J=20 ; R=12$
$\bullet 2$ is not equal to 0 so $I=20$ and $J=12 \quad \quad I=20 ; J=12 ; R=12$
$\bullet 20$ divided by 12 gives $R=8 \quad \quad I=20 ; J=12 ; R=8$
$\bullet 8 \neq 0$ so $I=12$ and $J=8\quad \quad I=12 ; J=8 ; R=8$
$\bullet 12 / 8$ gives 4 as remainder $\quad \quad I=12 ; J=8 ; R=4$
$\bullet 4 \neq 0$ so $I=8$ and $J=4 \quad \quad {I=8 ; J=4 ; R=4}$
$\bullet 8 / 4$ gives 0 as a remainder $\quad \quad I=8 ; J=4 ; R=0$
$\bullet R=0$ so the answer is $\quad \quad \quad J=4$