Answer
This question can be answered using the formulas from Section $3.3 .3 :$
Number of comparisons $=\frac{1}{2} n^{2}-\frac{1}{2} n$ $ \ \ \ \ \ \ $ Number of exchanges $=n$
$\begin{array}{lll}{\text { a. Comparisons: }} & {6} & {\text { Exchanges: }} & {4} \\ {\text { b. Comparisons: }} & {21} & {\text { Exchanges: }} & {7} \\ {\text { c. Comparisons: }} & {28} & {\text { Exchanges: }} & {8} \\ {\text { d. Comparisons: }} & {10} & {\text { Exchanges: }} & {5}\end{array}$
Work Step by Step
This question can be answered using the formulas from Section $3.3 .3 :$
Number of comparisons $=\frac{1}{2} n^{2}-\frac{1}{2} n$ $ \ \ \ \ \ \ $ Number of exchanges $=n$
$\begin{array}{lll}{\text { a. Comparisons: }} & {6} & {\text { Exchanges: }} & {4} \\ {\text { b. Comparisons: }} & {21} & {\text { Exchanges: }} & {7} \\ {\text { c. Comparisons: }} & {28} & {\text { Exchanges: }} & {8} \\ {\text { d. Comparisons: }} & {10} & {\text { Exchanges: }} & {5}\end{array}$