Fundamentals of Electrical Engineering

Published by McGraw-Hill Education
ISBN 10: 0073380377
ISBN 13: 978-0-07338-037-7

Chapter 2 - Fundamentals of Electric Circuits - Part 1 Circuits - Homework Problems - Page 50: 2.18

Answer

Final answers Circuit a) $I_1=0.3\ A\\I_2=-0.3\ A\\V_1=-6\ V\\$ Circuit b) $V_1=5\ V\\I_2=-0.167\ A\\$ Circuit c) $I_1=-1.25\ A\\I_2=0.75\ A\\V_1=52.5\ V$

Work Step by Step

Circuit a) - Terminal of $V_1$ is open circuited; this means that no current flows across it - Thus $I_1=-I_2$ Apply KVL $-15-I_1\times 30+I_2\times 20=0$ $-15-I_1\times 30-I_1\times 20=0$ $-15-I_1\times(30+20)=0$ $I_1=\frac{15}{30+20}=\frac{15}{50}=\frac{3}{10}=0.3\ A$ Find $I_2$ from the following relation $I_2=-I_1$ $I_2=-0.3\ A$ $V_1$ is parallel to resistor $20\Omega$. By applying KVL $V_1=I_2\times 20=-0.3\times 20=-6\ V$ Circuit b) Apply KVL $-V_1+\frac{1}{4}\times 20=0$ $V_1=\frac{1}{4}\times 20=5\ V$ Again, apply KVL $-V_1-I_2\times 30=0$ $V_1=-I_2\times 30$ $I_2=\frac{V_1}{30}=\frac{5}{30}=\frac{1}{6}=-0.167\ A$ circuit c) Apply KVL $-I_2\times 20 - (-0.5)\times 30=0$ $I_2=\frac{0.5\times 30}{20}=\frac{3}{4}=0.75\ A$ Apply KCL $I_1+I_2-(-0.5)=0$ $I_1+I_2+0.5=0$ $I_1=-(I_2+0.5)$ $I_1=-(0.75+0.5)$ $I_1=-1.25\ A$ Apply KVL $-V_1-(-1.25)\times 30+0.75\times 20=0$ $-V_1+1.25\times 30+0.75\times 20=0$ $V_1=0.75\times 20+1.25\times 30=52.5 V$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.