Fundamentals of Electrical Engineering

Published by McGraw-Hill Education
ISBN 10: 0073380377
ISBN 13: 978-0-07338-037-7

Chapter 2 - Fundamentals of Electric Circuits - Part 1 Circuits - Homework Problems - Page 53: 2.26

Answer

$R_{1}$ $=$ $ 7.68 $ $ ohms $ $R_{2}$ $=$ $ 5.76 $ $ ohms $ $R_{T}$ $=$ $ 3.29 $ $ohms$

Work Step by Step

According to the problem, the load should be two 75-W headlight, but one 75-W and one 100-W was placed instead. To determine the resistance of each load, we should look at the following formulas: $Equation$ $1$: $ Power (P) $ $=$ $Voltage (V)$ $\times$ $ Current(I )$ $Equation$ $2$: $ Current(I )$ $=$ $\frac{Voltage (V)}{Resistance (R)}$ $Equation$ $3$ (substituting formula of $ Current (I) $ from $Equation$ $2$): $ Power (P) $ $=$ $Voltage (V)$ $\times$ $\frac{Voltage (V)}{Resistance (R)}$ Simplifying $Equation$ $3$: $ Power (P) $ $=$ $\frac{Voltage(V)^{2}}{Resistance (R)}$ $Equation$ $4$: (manipulating $Equation$ $3$ for the formula of $ Resistance (R) $) $ Resistance (R) $ $=$ $\frac{Voltage(V)^{2}}{Power (P)}$ With given values from the problem: $P_{1}$ $=$ $ 75 $ $ Watts $ $P_{2}$ $=$ $ 100 $ $ Watts$ $ V $ $=$ $ 24 $ $ Volts $ Substituting the given to $Equation$ $4$: $ Resistance $ $(R_{1})$ $=$ $\frac{24^{2}}{75}$ $R_{1}$ $=$ $ 7.68 $ $ ohms $ $ Resistance $ $(R_{2})$ $=$ $\frac{24^{2}}{100}$ $R_{2}$ $=$ $ 5.76 $ $ ohms $ To find the total resistance seen by the battery, we will compute the total resistance of 2 parallel resistors by using the formula below: $Equation$ $5$: $ Resistance $ $(R_{T})$ $=$ $\frac{R_{1} \times R_{2}}{R_{1} + R_{2}}$ $R_{T}$ $=$ $\frac{7.68 \times 5.76}{7.68 + 5.76}$ $R_{T}$ $=$ $ 3.29 $ $ohms$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.