Fundamentals of Electrical Engineering

Published by McGraw-Hill Education
ISBN 10: 0073380377
ISBN 13: 978-0-07338-037-7

Chapter 2 - Fundamentals of Electric Circuits - Part 1 Circuits - Homework Problems - Page 54: 2.36

Answer

$R$ $=$ $10$ $kohms$ $v$ = $40$ $volts$ $v_{1}$ $=$ $10$ $volts$ $i$ $=$ $I_{T}$ $=$ $1$ $mA$

Work Step by Step

This is a series circuit with missing values for one resistor and the voltage source. A series circuit has only one current value passing through all its resistors. Let's focus on $R_{2}$ as this resistor has both the value of resistance and the voltage across it. $I_{T}$ $=$ $I_{R_{2}}$ $=$ $\frac{V_{R_{2}}}{R_{2}}$ $=$ $\frac{v_{1}}{R_{2}}$ $=$ $\frac{\frac{v}{4}}{10\times10^{3}}$ = $\frac{v}{40\times10^{3}}$ Now, given the total power of the circuit $P_{T}$ and the equation of the total current $I_{T}$ we can now determine the value of source $v$: $P_{T}$ $=$ $I_{T}\times{v}$ $40\times10^{-3}$ $=$ $\frac{v}{40\times10^{3}}\times{v}$ $40\times10^{-3}\times40\times10^{3}$ = $v\times{v}$ $1,600$ $=$ $v^{2}$ $v$ = $40$ $volts$ Therefore, $I_{T}$ is: $I_{T}$ $=$ $\frac{v}{40\times10^{3}}$ $I_{T}$ $=$ $\frac{40}{40\times10^{3}}$ $I_{T}$ $=$ $1$ $mA$ and $v_{1}$ s: $v_{1}$ $=$ $\frac{v}{4}$ $v_{1}$ $=$ $\frac{40}{4}$ $v_{1}$ $=$ $10$ $volts$ We can now compute for the total resistance $R_{T}$ and $R$ using ohm's law: $I_{T}$ $=$ $\frac{v}{R_{T}}$ Arranging to get $R_{T}$ $R_{T}$ $=$ $\frac{v}{I_{T}}$ $R_{T}$ $=$ $\frac{40}{1\times10^{-3}}$ $R_{T}$ $=$ $40$ $kohms$ $R_{T}$ $=$ $R_{1}$ + $R_{2}$ + $R$ + $R_{3}$ $40$ $kohms$ $=$ $8$ $kohms$ + $10$ $kohms$ + $R$ + $12$ $kohms$ $R$ $=$ $10$ $kohms$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.