Fundamentals of Electrical Engineering

Published by McGraw-Hill Education
ISBN 10: 0073380377
ISBN 13: 978-0-07338-037-7

Chapter 2 - Fundamentals of Electric Circuits - Part 1 Circuits - Homework Problems - Page 57: 2.48

Answer

The current through $R_{4}$, $R_{5}$ and $R_{6}$ is $\frac{10}{99}$ $amperes$ each or $0.0621$ $A$.

Work Step by Step

Please use the attached diagram for the calculation of $R_{eq}$: $R_{2}$ and $R_{3}$ in parallel: $R_{23}$ $=$ $\frac{40\times10}{40+10}$ $=$ $8$ $ohms$ $R_{4}$, $R_{5}$ and $R_{6}$ in parallel: $R_{456}$ $=$ $\frac{15}{3}$ $=$ $5$ $ohms$ (Note: For parallel resistors with equal value, the equivalent resistance is the value divide by the number of equal resistors.) $R_{1}$, $R_{23}$ and $R_{456}$ in series: $R_{eq}$ $=$ $20 + 8 +5$ $=$ $33$ $ohms$ Total circuit current $I$ is: $I$ $=$ $\frac{V_{s}}{R_{eq}}$ $=$ $\frac{10}{33}$ $amperes$ Using KCL: $I- I_{23} - I_{456} = 0$ By Current Divider, we can determine $I_{23}$ and $I_{456}$ respectively, $I_{23}$ $=$ $I\times\frac{R_{456}}{R_{23}+R_{456}}$ $=$ $\frac{10}{33}\times\frac{5}{8+5}$ $=$ $0.1166$ $A$ $I_{456}$ $=$ $I\times\frac{R_{23}}{R_{23}+R_{456}}$ $=$ $\frac{10}{33}\times\frac{8}{8+5}$ $=$ $0.1864$ $A$ Now since $R_{4}$, $R_{5}$ and $R_{6}$ have equal values: $I_{4}$ $=$ $I_{5}$ $=$ $I_{6}$ $=$ $\frac{I_{456}}{3}$ $=$ $\frac{0.1864}{3}$ $=$ $0.0621$ $amperes$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.