Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 2 - Force Vectors - Section 2.3 - Vector Addition of Forces - Problems - Page 31: 24

Answer

Magnitude of the resultant force $F_R$ is $F\sqrt {2(1+\cos\theta)}$ The angle between $\vec F_R$ and $\vec F_1$ is $\frac{\theta}{2}$

Work Step by Step

Two forces $\vec F_1$ and $\vec F_2$ act on the screw eye. The lines of action of these two forces are at an angle $\theta$ apart. The magnitude of each force is $F_1 = F_2 = F$. Let $\vec F_R$ be the resultant force and the angle between $\vec F_R$ and $\vec F_1$ is $\alpha$ Using the law of cosines in the triangle formed by $F_1$, $F_2$, and $F_R$, we get, $F_R=\sqrt {F_1^2+F_2^2-2F_1F_2\cos(180^{\circ}-\theta)}$ or, $F_R=\sqrt {F^2+F^2+2\times F\times F\times\cos\theta}$ or, $F_R=\sqrt {2F^2+2F^2\cos\theta}$ or, $F_R=F\sqrt {2(1+\cos\theta)}$ Using the law of sines in the triangle formed by $F_1$, $F_2$, and $F_R$, we get, $\frac{F_1}{\sin(\theta-\alpha)}=\frac{F_2}{\sin\alpha}=\frac{F_R}{\sin(180^\circ-\theta)}$ $\therefore\frac{F_2}{\sin\alpha}=\frac{F_R}{\sin(180^\circ-\theta)}$ or, $\sin\alpha=\frac{F_2}{F_R}\times\sin(180^\circ-\theta)$ or, $\sin\alpha=\frac{F}{F\sqrt {2(1+\cos\theta)}}\times\sin\theta$ or, $\sin\alpha=\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{\sqrt {2\times2\cos^2\frac{\theta}{2}}}$ or, $\sin\alpha=\sin\frac{\theta}{2}$ or, $\alpha=\frac{\theta}{2}$ Therefore the magnitude of the resultant force $\vec F_R$ is $F\sqrt {2(1+\cos\theta)}$ and the angle between $\vec F_R$ and $\vec F_1$ is $\frac{\theta}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.