Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 2 - Force Vectors - Section 2.4 - Addition of a System of Coplanar Forces - Problems - Page 43: 55

Answer

$F\approx2.035\;kN$ $F_R\approx7.86\;kN$

Work Step by Step

First, we resolve each force into its $x$ and $y$ components by using the parallelogram law: Let $F_{1x}$ and $F_{1y}$ are the $x$ and $y$ components of $\vec {F_1}$ force, in which $F_1=8\;kN$. Thus we have $F_{1x}=8\cos0^\circ\;kN=8\;kN$ $F_{1y}=8\sin0^\circ\;kN=0\;kN$ Let $F_{2x}$ and $F_{2y}$ are the $x$ and $y$ components of $\vec {F_2}$ force, in which $F_2=F\;kN$. Thus we have $F_{2x}=-F\cos45^\circ\;kN=-\frac{F}{\sqrt 2}\;kN\approx-0.707F\;kN$ $F_{2y}=-F\sin45^\circ\;kN=-\frac{F}{\sqrt 2}\;kN\approx-0.707F\;kN$ Let $F_{3x}$ and $F_{3y}$ are the $x$ and $y$ components of $\vec {F_3}$ force, in which $F_3=14\;kN$. Thus we have $F_{3x}=-14\cos30^\circ\;kN=-7\sqrt 3\;kN\approx-12.12\;kN$ $F_{3y}=14\sin30^\circ\;kN=7\;kN$ Second, using scalar notation and indicating the positive directions of components along the $x$ and $y$ axes with symbolic arrows, we sum these components algebraically: Summing the x components, we have $\xrightarrow{+} (F_R)_x=\sum F_x$ or, $(F_R)_x=(8-0.707F-12.12)\;kN=(-0.707F-4.12)\;kN$ Summing the y components yields $+\uparrow (F_R)_y=\sum F_y$ or, $(F_R)_y=(0-0.707F+7)\;kN=(-0.707F+7)\;kN$ $\therefore$ The resultant force has a magnitude of $F_R=\sqrt {(0.707F+4.12)^2+(-0.707F+7)^2}$ or, $F_R\approx\sqrt {F^2-4.07F+65.97}\;kN$ or, $F_R=\sqrt {F^2-2\times F\times2.035+2.035^2-2.035^2+65.97}\;kN$ or, $F_R=\sqrt {(F-2.035)^2-2.035^2+65.97}\;kN$ or, $F_R=\sqrt {(F-2.035)^2-2.035^2+65.97}\;kN$ or, $F_R=\sqrt {(F-2.035)^2+61.83}\;kN$ Now, for non-zero minimum of $F_R$, the value of $(F-2.035)$ has to be zero. Thus $F-2.035=0$ or, $F=2.035\;kN$ For $F=2.035\;kN$, the magnitude of resultant force becomes $F_R=\sqrt {61.83}\;kN\approx7.86\;kN$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.