Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 2 - Force Vectors - Section 2.6 Addition of Cartesian Vectors - Fundamental Problems - Page 51: 13

Answer

$\alpha=\cos^{-1}\Big(\frac{45.93}{75}\Big)\approx 52.24^\circ$ $\beta=\cos^{-1}\Big(\frac{45.93}{75}\Big)\approx 52.24^\circ$ $\gamma=\cos^{-1}\Big(\frac{37.5}{75}\Big)=120^\circ$

Work Step by Step

The direction of a vector can be specified using two angles, namely, a transverse angle $(\theta)$ and an azmuth angle $(\phi)$. As shown in Figure F2–13, $\theta=(90^{\circ}-45^{\circ})=45^{\circ}$ $\phi=(90^{\circ}+30^{\circ})=120^{\circ}$ The components of $\vec F$ can then be determined by applying trigonometry. $F_z = F \cos\phi$ $\implies F_z = 75 \cos120^\circ\;lb=-37.5\;lb$ $F_x = F \sin\phi\cos\theta$ $\implies F_x = 75 \sin120^\circ\cos45^\circ\;lb\approx 45.93\;lb$ and $F_y = F \sin\phi\sin\theta$ $\implies F_x = 75 \sin120^\circ\sin45^\circ\;lb\approx 45.93\;lb$ Having determined the magnitudes and directions of the components of each force, we can express the force as a Cartesian vector. $\vec F=\Big\{45.93\hat i+45.93\hat j-37.5\hat k\Big\}\;lb$ The magnitude of $\vec F$ is given by $F=\sqrt {(45.93)^2+(45.93)^2+(37.5)^2}\;lb$ or, $F\approx 75\;lb$ Now, the unit vector acting in the direction of $\vec F$ is given by $\vec u=\frac{45.93}{75}\hat i+\frac{45.93}{75}\hat j-\frac{37.5}{75}\hat i$ $u\approx 0.61\hat i+\hat j-37.5\hat k$ Now, the coordinate direction angles of $\vec F$ can be determined from the components of the unit vector $\vec u$ $\alpha=\cos^{-1}\Big(\frac{45.93}{75}\Big)\approx 52.24^\circ$ $\beta=\cos^{-1}\Big(\frac{45.93}{75}\Big)\approx 52.24^\circ$ $\gamma=\cos^{-1}\Big(\frac{37.5}{75}\Big)=120^\circ$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.