Answer
(a) $σ_{BD}= 11.09 ksi $ $(tension)$
(b) $σ_{BD}=12.00 ksi $ $( cmpression)$
Work Step by Step
In the given problem we have to find the normal stress member BD for two different cases of angle $θ$.
So, we will consider the free body diagram of the entire system take moments about point A to calculate the force in member BD, and subsequently, calculate the stress from the given cross-sectional area.
For Part (a): When θ=0
Calculate the perpendicular distance of all the forces from point A.
The distance of 4kpis force.
$d_{4}=18 \times sin (30-θ)$
$d_{4}= 18 \times (30)$
$d_{4}= 9 in$
Distance of $F_{BD}$
$d_{BD}= 12 \times cos (30)$
$d_{BD}= 12 \times \frac{\sqrt 3}{2}$
$d_{BD}= 10.39 in $
So, now take a moment of all the forces about point A
$∑M_{A}=0$
$4 \times d_{4}- F_{BD}\times d_{BD}=0$
$F_{BD}= \frac{4 \times 9}{10.39}$
$F_{BD}= 3.464 kips (tensions)$
Now, Calculate the area of member BD for tensile force
$A=(b-d)t$
$A=(1-\frac{3}{8})(\frac{1}{2)}$
$A= 0.3125 in^{2}$
Calculate tensile stress in member BD using the formula
$σ_{BD}=\frac{F_{BD}}{A}$
$σ_{BD}=\frac{3.464 kips}{0.3125}$
$σ_{BD}=11.09 ksi$
For Part (b): When θ=$90 '$
Calculate the perpendicular distance of all the forces from point A.
The distance of 4kpis force.
$d_{4}=18 \times sin (30-θ)$
$d_{4}= 18 \times sin (30-90)$
$d_{4}= 18 \times \frac{\sqrt 3}{2}$
$d_{4}= 15.58 in$
Distance of $F_{BD}$
$d_{BD}= 12 \times cos (30)$
$d_{BD}= 12 \times \frac{\sqrt 3}{2}$
$d_{BD}= 10.39 in $
So, now take a moment of all the forces about point A
$∑M_{A}=0$
$4 \times d_{4}+ F_{BD}\times d_{BD}=0$
$F_{BD}= \frac{4 \times 15.58}{10.39}$
$F_{BD}= -6 kips (compression)$
Now, Calculate the area of member BD for tensile force
$A=(b)t$
$A=(1)(\frac{1}{2)}$
$A= 0.5 in^{2}$
Calculate tensile stress in member BD using the formula
$σ_{BD}=\frac{F_{BD}}{A}$
$σ_{BD}=\frac{6 kips}{0.5}$
$σ_{BD}=12 ksi$