Mechanics of Materials, 7th Edition

Published by McGraw-Hill Education
ISBN 10: 0073398233
ISBN 13: 978-0-07339-823-5

Chapter 1 - Problems - Page 23: 1.13

Answer

$\sigma_{DC} = {-4.97 MPa}$

Work Step by Step

Find the value of the reactions by summing moment at A. $\circlearrowleft^{+} \Sigma {M@_A = 0}$ ${-200(9.81)(1150) + F_f (850) = 0}$ ${F_f = 2654.471 N \uparrow}$ ${\uparrow^{+} \Sigma F_v = 0}$ ${-200(9.81) + 2654.471 + F_Av = 0}$ ${F_{Av} = -692.471 N}$ $Find \thinspace F_{DC} \thinspace by \thinspace summing \thinspace moment \thinspace at \thinspace point \thinspace E$ $\circlearrowleft^{+} \Sigma {M@_E = 0}$ $200(9.81)(200) + 692.471(1350) - F_{DC} \frac{675}{682.367} (550) =0$ $F_{DC} = 2439.493 N \searrow$ $The \thinspace area \thinspace of \thinspace rod \thinspace DC \thinspace is \colon$ $A_{DC} = \frac{\pi}{4} (25^2) = 490.874 mm^2$ $Then \thinspace the \thinspace stress \thinspace in \thinspace the \thinspace rod \thinspace is\colon$ ${\sigma_{DC} = \frac{2439.493 N}{490.874 mm^2} = 4.97 MPa}$ ${Since \thinspace the \thinspace force \thinspace is \thinspace directed \thinspace to \thinspace the \thinspace rod, \thinspace the \thinspace force \thinspace is \thinspace compressive \thinspace hence\colon}$ $\sigma_{DC} = -4.97MPa$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.