Mechanics of Materials, 7th Edition

Published by McGraw-Hill Education
ISBN 10: 0073398233
ISBN 13: 978-0-07339-823-5

Chapter 2 - Problems - Page 74: 2.16

Answer

$A_{\text {tube }}=\frac{\pi}{4}\left(d_{o}^{2}-d_{i}^{2}\right)=\frac{\pi}{4}\left(36^{2}-28^{2}\right)=402.12 \mathrm{mm}^{2}=402.12 \times 10^{-6} \mathrm{m}^{2}$ $A_{\mathrm{rod}}=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(25)^{2}=490.87 \mathrm{mm}^{2}=490.87 \times 10^{-6} \mathrm{m}^{2}$ $\delta_{\text {tube }}=\frac{P L}{E_{\text {tube }} A_{\text {tube }}}=\frac{P(0.250)}{\left(70 \times 10^{9}\right)\left(402.12 \times 10^{-6}\right)}=8.8815 \times 10^{-9} P$ $\delta_{\text {rod }}=-\frac{P L}{E_{\text {rod }} A_{\text {rod }}}=\frac{P(0.250)}{\left(105 \times 10^{6}\right)\left(490.87 \times 10^{-6}\right)}=-4.8505 \times 10^{-9} P$ $\delta^{*} =\left(\frac{1}{4} \text { turn }\right) \times 1.5 \mathrm{mm}=0.375 \mathrm{mm}=375 \times 10^{-6} \mathrm{m} $ $\delta_{\text {tube }} =\delta^{*}+\delta_{\text {rod }} \text { or } \delta_{\text {tube }}-\delta_{\text {rod }}=\delta^{*} $ $ 8.8815 \times 10^{-9} P+4.8505 \times 10^{-9} P =375 \times 10^{-6} $ $P =\frac{0.375 \times 10^{-3}}{(8.8815+4.8505)\left(10^{-9}\right)}=27.308 \times 10^{3} \mathrm{N} $ (a) ${\sigma_{\text {tube }}=\frac{P}{A_{\text {tube }}}} {=\frac{27.308 \times 10^{3}}{402.12 \times 10^{-6}}=67.9 \times 10^{6} \mathrm{Pa}} $ $$ \therefore {\sigma_{\text {tube }}=67.9 \mathrm{MPa}} $$ $ {\sigma_{\text {rod }}} {=-\frac{P}{A_{\text {rod }}}=-\frac{27.308 \times 10^{3}}{490.87 \times 10^{-6}}=-55.6 \times 10^{6} \mathrm{Pa}} $ $$\therefore {\sigma_{\text {rod }}=-55.6 \mathrm{MPa}}$$ --- (b) ${\delta_{\text {that }}=\left(8.8815 \times 10^{-9}\right)\left(27.308 \times 10^{3}\right)=242.5 \times 10^{-6} \mathrm{m}} $ $$ \therefore {\delta_{\text {trube }}=0.243 \mathrm{mm}} $$ $ {\delta_{\text {rod }}=-\left(4.8505 \times 10^{-9}\right)\left(27.308 \times 10^{3}\right)=-132.5 \times 10^{-6} \mathrm{m}} $ $$\therefore {\delta_{\mathrm{rod}}=-0.1325 \mathrm{mm}} $$

Work Step by Step

$A_{\text {tube }}=\frac{\pi}{4}\left(d_{o}^{2}-d_{i}^{2}\right)=\frac{\pi}{4}\left(36^{2}-28^{2}\right)=402.12 \mathrm{mm}^{2}=402.12 \times 10^{-6} \mathrm{m}^{2}$ $A_{\mathrm{rod}}=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(25)^{2}=490.87 \mathrm{mm}^{2}=490.87 \times 10^{-6} \mathrm{m}^{2}$ $\delta_{\text {tube }}=\frac{P L}{E_{\text {tube }} A_{\text {tube }}}=\frac{P(0.250)}{\left(70 \times 10^{9}\right)\left(402.12 \times 10^{-6}\right)}=8.8815 \times 10^{-9} P$ $\delta_{\text {rod }}=-\frac{P L}{E_{\text {rod }} A_{\text {rod }}}=\frac{P(0.250)}{\left(105 \times 10^{6}\right)\left(490.87 \times 10^{-6}\right)}=-4.8505 \times 10^{-9} P$ $\delta^{*} =\left(\frac{1}{4} \text { turn }\right) \times 1.5 \mathrm{mm}=0.375 \mathrm{mm}=375 \times 10^{-6} \mathrm{m} $ $\delta_{\text {tube }} =\delta^{*}+\delta_{\text {rod }} \text { or } \delta_{\text {tube }}-\delta_{\text {rod }}=\delta^{*} $ $ 8.8815 \times 10^{-9} P+4.8505 \times 10^{-9} P =375 \times 10^{-6} $ $P =\frac{0.375 \times 10^{-3}}{(8.8815+4.8505)\left(10^{-9}\right)}=27.308 \times 10^{3} \mathrm{N} $ (a) ${\sigma_{\text {tube }}=\frac{P}{A_{\text {tube }}}} {=\frac{27.308 \times 10^{3}}{402.12 \times 10^{-6}}=67.9 \times 10^{6} \mathrm{Pa}} $ $$ \therefore {\sigma_{\text {tube }}=67.9 \mathrm{MPa}} $$ $ {\sigma_{\text {rod }}} {=-\frac{P}{A_{\text {rod }}}=-\frac{27.308 \times 10^{3}}{490.87 \times 10^{-6}}=-55.6 \times 10^{6} \mathrm{Pa}} $ $$\therefore {\sigma_{\text {rod }}=-55.6 \mathrm{MPa}}$$ --- (b) ${\delta_{\text {that }}=\left(8.8815 \times 10^{-9}\right)\left(27.308 \times 10^{3}\right)=242.5 \times 10^{-6} \mathrm{m}} $ $$ \therefore {\delta_{\text {trube }}=0.243 \mathrm{mm}} $$ $ {\delta_{\text {rod }}=-\left(4.8505 \times 10^{-9}\right)\left(27.308 \times 10^{3}\right)=-132.5 \times 10^{-6} \mathrm{m}} $ $$\therefore {\delta_{\mathrm{rod}}=-0.1325 \mathrm{mm}} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.