Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version 8th Edition

Published by Wiley
ISBN 10: 1119080703
ISBN 13: 978-1-11908-070-1

Chapter 1 - Problems - Page 31: 1.15

Answer

$K_{v}\ a n d\ K_{u}$ are dimensionless the equation is general homogeneous so it will be valid for any system of units

Work Step by Step

$\begin{aligned} & \Delta p=k_v \frac{\mu V}{D}+K_u\left[\frac{A_0}{A_1}-1\right]^2 \rho v^2 \\ & {\left[F L^{-2}\right] \doteq\left[K_v\right]\left[\left(\frac{F T}{L^2}\right)\left(\frac{L}{T}\right)\left(\frac{1}{L}\right)\right]+\left[K_u\right]\left[\frac{\left(L^2\right)}{\left(L^2\right)}-1\right]^2\left[\frac{F T^2}{L^4}\right]\left[\frac{L}{T}\right]^2} \\ & {\left[F L^{-2}\right] \doteq\left[K_v\right]\left[F L^{-2}\right]+\left[K_u\right]\left[F L^{-2}\right]}\end{aligned}$ $K_{v}\ a n d\ K_{u}$ are dimensionless because each term must have the same dimension . the equation is general homogeneous so it will be valid for any system of units
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.