System Dynamics 3rd Edition

Published by McGraw-Hill Education
ISBN 10: 0073398063
ISBN 13: 978-0-07339-806-8

Chapter 2 - Problems - Page 109: 2.4

Answer

From the transform definition, we have $$\mathcal{L}[m t]=\lim _{T \rightarrow \infty}\left[\int_{0}^{T} m t e^{-s t} d t\right]=m \lim _{T \rightarrow \infty}\left[\int_{0}^{T} t e^{-s t} d t\right]$$ The method of integration by parts states that $$\int_{0}^{T} u d v=\left.u v\right|_{0} ^{T}-\int_{0}^{T} v d u$$ Choosing $u=t$ and $d v=e^{-s t} d t,$ we have $d u=d t, v=-e^{-s t} / s,$ and $$\mathcal{L}[m t]=m \lim _{T \rightarrow \infty}\left[\int_{0}^{T} t e^{-s t} d t\right]=m \lim _{T \rightarrow \infty}\left[\left.t \frac{e^{-s t}}{-s}\right|_{0} ^{T}-\int_{0}^{T} \frac{e^{-s t}}{-s} d t\right]$$ $$=m \lim _{T \rightarrow \infty}\left[\left. t \frac{e^{-s t}}{-s} \right|_{0} ^{T}-\left.\frac{e^{-s t}}{(-s)^{2}}\right|_ { 0 } ^ { T }\right] $$ $$=m \lim _{T \rightarrow \infty}\left[\frac{T e^{-s T}}{-s}-0-\frac{e^{-s T}}{(-s)^{2}}+\frac{e^{0}}{(-s)^{2}}\right]=\frac{m}{s^{2}}$$ because, if we choose the real part of $s$ to be positive, then $$\lim _{T \rightarrow \infty} T e^{-s T}=0$$

Work Step by Step

From the transform definition, we have $$\mathcal{L}[m t]=\lim _{T \rightarrow \infty}\left[\int_{0}^{T} m t e^{-s t} d t\right]=m \lim _{T \rightarrow \infty}\left[\int_{0}^{T} t e^{-s t} d t\right]$$ The method of integration by parts states that $$\int_{0}^{T} u d v=\left.u v\right|_{0} ^{T}-\int_{0}^{T} v d u$$ Choosing $u=t$ and $d v=e^{-s t} d t,$ we have $d u=d t, v=-e^{-s t} / s,$ and $$\mathcal{L}[m t]=m \lim _{T \rightarrow \infty}\left[\int_{0}^{T} t e^{-s t} d t\right]=m \lim _{T \rightarrow \infty}\left[\left.t \frac{e^{-s t}}{-s}\right|_{0} ^{T}-\int_{0}^{T} \frac{e^{-s t}}{-s} d t\right]$$ $$=m \lim _{T \rightarrow \infty}\left[\left. t \frac{e^{-s t}}{-s} \right|_{0} ^{T}-\left.\frac{e^{-s t}}{(-s)^{2}}\right|_ { 0 } ^ { T }\right] $$ $$=m \lim _{T \rightarrow \infty}\left[\frac{T e^{-s T}}{-s}-0-\frac{e^{-s T}}{(-s)^{2}}+\frac{e^{0}}{(-s)^{2}}\right]=\frac{m}{s^{2}}$$ because, if we choose the real part of $s$ to be positive, then $$\lim _{T \rightarrow \infty} T e^{-s T}=0$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.