Materials Science and Engineering: An Introduction

Published by Wiley
ISBN 10: 1118324579
ISBN 13: 978-1-11832-457-8

Chapter 4 - Imperfections in Solids - Questions and Problems - Page 135: 4.4

Answer

$N_{v} = 3.52 \times 10^{24} m^{3}$

Work Step by Step

Given: Gold (Au) at 900°C (1173 K) energy for vacancy formation is 0.98 eV/atom density is $18.63 g/cm^{3}$ (196.9 g/mol) Required: number of vacancies per cubic meter Solution: Using Equations 4.1 and 4.2, $ N_{v} = N exp (-\frac{Q_{v}}{kT}) = \frac{N_{A}p_{Au}}{A_{Au}} exp(-\frac{Q_{v}}{kT}) $ Substituting the given values, $N_{v} = {\frac{(6.022 \times 10^{23} atoms/mol)(18.63 g/cm^{3})}{196.9 g/mol}} exp [-\frac{0.98 eV/atom}{(8.62 \times 10^{-5} eV/atom-K)(1173 K)}] = 3.52 \times 10^{18} cm^{3}= 3.52 \times 10^{24} m^{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.