Numerical Methods for Engineers

Published by McGraw-Hill Science/Engineering/Math
ISBN 10: 0073401064
ISBN 13: 978-0-07340-106-5

Chapter 1 - Mathematical Modeling and Engineering Problem Solving - Problems - Page 21: 1.1

Answer

$v(t)=v(0)e^{-\frac cmt}+\frac{mg}c(1-e^{-\frac cmt})$

Work Step by Step

Equation 1.9: $\frac{dv}{dt}=g-\frac cmv$ Multiply by $e^{\frac cmt}$ $v'e^{\frac cmt}+\frac cmve^{\frac cm t}=ge^{\frac cmt}$ Product rule $(ve^{\frac cm t})'=ge^{\frac cmt}$ $v(t)e^{\frac cmt}-v(0)=g\int\limits_0^te^{\frac cm\bar{t}}d\bar{t}$ Note: bar over t is to differentiate the integral variable from the time at an instant. $v(t)=v(0)e^{-\frac cmt}+\frac{mg}c(1-e^{-\frac cmt})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.