Chemistry: The Molecular Nature of Matter and Change 7th Edition

Published by McGraw-Hill Education
ISBN 10: 007351117X
ISBN 13: 978-0-07351-117-7

Chapter 1 - Problems - Page 36: 1.36

Answer

(a) $ 2.56 *10^{-9}mm^3 $ (b) $2.56 * 10^{-10} L $ (the book incorrectly omits the 2.56)

Work Step by Step

$(a)$ To convert cubic μm to cubic mm we multiply by the conversion factor for micro- to milli- and then cube. Since $\mu$(micro-) $= 10^{-6}$ and $m$(milli-) = $10^{-3}$ so there are $10^3 \mu m$ in 1$mm$ $2.56 \mu m^3 * \dfrac{(1mm)}{( 10^3 \mu m)^3}$ Distribute the exponent remembering that when we raise an exponent by another exponent we multiply them together. $2.56 \mu m^3 * \dfrac{1mm^3}{( 10^{(3*3)} \mu m^3)}$ $2.56 \mu m^3 * \dfrac{1mm^3}{( 10^{9} \mu m^3)}$ Recall that $\dfrac{1}{x^2}$ = $x^{-2}$ and cancel the units $$2.56 *10^{-9}mm^3$$ $(b)$ For this step want to know the volume of $10^5$ cells in $L$ (liters). Recall that $1L = 1dm^3$. Since deci- = $10^{-1}$ and milli- = $10^{-3}$ there are $10^2mm$ in $1 dm$. $2.56 *10^{-9}mm^3 * 10^5 * \dfrac{(1dm)^3}{(10^{2}mm)^3}$ $2.56 *10^{-9}mm^3 * 10^5 * \dfrac{1dm^3}{10^{(2*3)}mm^3}$ $2.56 *10^{-9}mm^3 * 10^5 * \dfrac{1dm^3}{10^{(6)}mm^3}$ $2.56 *10^{-9} * 10^5 * 10^{-6} dm^3$ $2.56 * 10^{(-9+5-6)} dm^3 $ $$2.56 * 10^{-10} L$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.