Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Chapter 1 - Topic 1A - The perfect gas - Problems - Page 55: 1A.6

Answer

Partial pressure $\left(\mathrm{NH}_{3}\right)$ is equal to 1.36 $\mathrm{atm}$ Partial pressure $\left(\mathrm{N}_{2}\right)$ is equal to 0.34 atm

Work Step by Step

In this excercise we have a vessel of volume $\mathbf{V}=22.4 \mathrm{dm}^{3}$ and it contains 2.0 mol $\mathrm{H}_{2}$ and 1.0 $\mathrm{mol} \mathrm{N}_{2}$ at the temperature of $\mathrm{T}=273.15 \mathrm{K}$ initially. When these two molecules react they form $\mathrm{NH}_{3}$ It is shown with the reaction: $3 \mathrm{H}_{2}+\mathrm{N}_{2} \longrightarrow 2 \mathrm{NH}_{3}$ We have to calculate partial pressures of the gases in the final mixture and the total pressure Firstly we will calculate the moles of nitrogen that react with 2 moles of hydrogen: $$ 2.0 \mathrm{mol} \mathrm{H}_{2} \cdot \frac{1 \mathrm{mol} \mathrm{N}_{2}}{3 \mathrm{mol} \mathrm{H}_{2}}=0.667 \mathrm{mol} \mathrm{N}_{2} $$ Moles of nitrogen left after the reaction can be calculated as: total moles of nitrogen minus moles of nitrogen reacted So: $$ \begin{aligned} \text { Mol of } \mathrm{N}_{2} \text { left } &=1.0 \mathrm{mol}-0.667 \mathrm{mol} \\ &=0.333 \mathrm{mol} \end{aligned} $$ Moles of ammonia that are formed in this reaction are based on the moles of hydrogen reacted $$ \begin{aligned} \text { Mole of } \mathrm{NH}_{3} \text { formed } &=2.0 \mathrm{mol} ] \mathrm{H}_{2} \cdot \frac{2 \mathrm{mol} \mathrm{NH}_{3}}{3 \mathrm{molH}_{2}} \\ &=1.333 \mathrm{mol} \mathrm{NH}_{3} \end{aligned} $$ And now total moles of gas in the conteiner: $0.333 \mathrm{mol}+1.333 \mathrm{mol}=1.666 \mathrm{mol}$ _______________________________________________________________ Total pressure of the final mixture would be calculated by using ideal gas equation: $p V=n R T$ $p=\frac{n R T}{V}$ These symbols are: $\mathbf{p}$ = total pressure $\mathbf{n}=1.666$ mol - total number of moles $\mathbf{R}=0.0821 \mathrm{dm}^{3}$ atmmol $^{-1} \mathrm{K}^{-1}$ - gas constant $\mathbf{T}=273.15 \mathrm{K}$ - temperature $\mathbf{V}=22.4 \mathrm{dm}^{3}$ - volume So total pressure in final mixture is: $\begin{aligned} p &=\frac{n R T}{V} \\ &=\frac{1.666 \mathrm{mol} \cdot 0.0821 \mathrm{dm}^{3} \mathrm{atmmol}^{-1} \mathrm{K}^{-1} \cdot 273.15 \mathrm{K}}{22.4 \mathrm{dm}^{3}} \\ &=1.7 \mathrm{atm} \end{aligned}$ Mole fraction of $\mathrm{N}_{2}$ and $\mathrm{NH}_{3} :$ $$ \begin{aligned} \text { Mole fractionof } \mathrm{N}_{2} &=\frac{0.333 \mathrm{mol}}{1.666 \mathrm{mol}} \\ &=0.20 \end{aligned} $$ $$\begin{aligned} \text { Mole fractionof } \mathrm{NH}_{3} &=\frac{1.333 \mathrm{mol}}{1.666 \mathrm{mol}} \\ &=0.80 \end{aligned}$$ The partial pressure of a gas in the mixture will be calculated when we multiply product of mole fraction of the gas and total pressure of the mixture: $\begin{aligned} \text { Partial pressure of } \mathrm{N}_{2}, p_{\mathrm{N}_{2}} &=\chi_{N_{2}} p_{\text { total }} \\ &=0.20 \cdot 1.7 \mathrm{atm} \\ &=0.34 \mathrm{atm} \end{aligned}$ $\begin{aligned} \text { Partial pressure of } \mathrm{NH}_{3}, p_{\mathrm{N}_{2}} &=\chi_{N H_{3}} p_{\text { total }} \\ &=0.80 \cdot 1.7 \mathrm{atm} \\ &=1.36 \mathrm{atm} \end{aligned}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.