Answer
$$C_{p,m} = 52.6 \space J \space K^{-1} \space mol^{-1}$$ $$C_{v,m} = 44.3 \space J \space K^{-1} \space mol^{-1}$$
Work Step by Step
$$\Delta H = C_{p} \Delta T$$ $$\frac{\Delta H}{\Delta T} = C_p$$ $$C_p = \frac{178 \space J}{1.78 \space K} =100 \space J \space K^{-1}$$ $$C_{p,m} = \frac{C_p}{n } = \frac{100 \space J \space K^{-1}}{1.9 \space mol} = 52.6 \space J \space K^{-1} \space mol^{-1}$$
$$C_{p,m} - C_{v,m} = R$$ $$C_{v,m} = C_{p,m} - R$$ $$C_{v,m} = 52.6 \space J \space K^{-1} \space mol^{-1} - 8.314 \space J \space K^{-1} \space mol^{-1}$$ $$C_{v,m} = 44.3 \space J \space K^{-1} \space mol^{-1}$$