Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Chapter 2 - Topic 2C - Thermochemistry - Exercises - Page 105: 2C.9(a)

Answer

-800KJ/mol

Work Step by Step

There are two ways to solve this problem. Way 1-- Step 1: Compute $\Delta$$H_{R}$$^{\circ}$(298.15K) for the reaction C$H_{4}$(g)+2$O_{2}$(g)--> C$O_{2}$(g)+2$H_{2}$O(l) **Notice the water product is in liquid phase** $\Delta$$H_{R}$$^{\circ}$(298.15K)= $\Delta$$H_{f}$$^{\circ}$(C$O_{2}$(g))+2$\Delta$$H_{f}$$^{\circ}$($H_{2}$O(l))-$\Delta$$H_{f}$$^{\circ}$(C$H_{4}$(g))-2$\Delta$$H_{f}$$^{\circ}$($O_{2}$(g)) = -393.51KJ/mol+2$\times$(-285.83KJ/mol)-(-74.81KJ/mol)-0 = -890.36 KJ/mol Step 2: Compute the individual changes of enthanpy for 1 mol of all components ($φ_{i}$) and the net change of enthanpy from 298.15K to 500K: φ(C$O_{2}$(g))=$\int^{500K}_{298.15K}$$C_{P,m (CO_{2},g)}$dT=$\int^{500K}_{298.15K}$(44.22+8.79$\times$$10^{-3}$T-$\frac{8.62\times10^{5}}{T^{2}}$)(J/mol-K)dT =8.47 KJ/mol φ($H_{2}O$)=$\int^{373.15K}_{298.15K}$$C_{P,m (H_{2}O,l)}$dT+$\Delta$$H^{^{\circ}}_{vap}$(373.15K)+$\int^{500K}_{373.15K}$$C_{P,m (H_{2}O,g)}$dT =$\int^{373.15K}_{298.15K}$(75.29J/mol-K)dT+40.7KJ/mol+$\int^{500K}_{373.15K}$(33.58J/mol-K)dT = 50.61 KJ/mol φ($O_{2}$(g))=$\int^{500K}_{298.15K}$$C_{P,m (O_{2},g)}$dT=$\int^{500K}_{298.15K}$(29.96+4.18$\times$$10^{-3}$T-$\frac{1.67\times10^{5}}{T^{2}}$)(J/mol-K)dT =6.16 KJ/mol φ(C$H_{4}$(g))=$\int^{500K}_{298.15K}$$C_{P,m (CH_{4}, g)}$dT=$\int^{500K}_{298.15K}$(35.31 J/mol-K)dT =7.13 KJ/mol The net change =φ(C$O_{2}$(g))+2φ($H_{2}O$)-φ(C$H_{4}$(g))-2φ($O_{2}$(g)) =(8.47+2$\times$50.61-7.13-2$\times$6.16) KJ/mol=90.24 KJ/mol Step 3: $\Delta$$H_{R}$$^{\circ}$(500K)=$\Delta$$H_{R}$$^{\circ}$(298.15K)+(Net change of enthalpy from step 2) = (-890.36+90.24)KJ/mol$\approx$ -800KJ/mol Way 2-- Step 1: Compute $\Delta$$H_{R}$$^{\circ}$(298.15K) for the reaction C$H_{4}$(g)+2$O_{2}$(g)--> C$O_{2}$(g)+2$H_{2}$O(g) **Notice the water product is in gaseous phase** $\Delta$$H_{R}$$^{\circ}$(298.15K)= $\Delta$$H_{f}$$^{\circ}$(C$O_{2}$(g))+2$\Delta$$H_{f}$$^{\circ}$($H_{2}$O(g))-$\Delta$$H_{f}$$^{\circ}$(C$H_{4}$(g))-2$\Delta$$H_{f}$$^{\circ}$($O_{2}$(g)) = -393.51KJ/mol+2$\times$(-241.82KJ/mol)-(-74.81KJ/mol)-0 = -802.34 KJ/mol Step 2: Compute the individual changes of enthanpy for 1 mol of all components ($φ_{i}$) and the net change of enthanpy from 298.15K to 500K: Values of φ(C$O_{2}$(g)), φ($O_{2}$(g)) and φ(C$H_{4}$(g)) are the same as way 1, and the only difference is φ($H_{2}O$): φ($H_{2}O$)=$\int^{500K}_{298.15K}$$C_{P,m (H_{2}O,g)}$dT=$\int^{500K}_{298.15K}$(33.58J/mol-K)dT= 6.78 KJ/mol The net change= φ(C$O_{2}$(g))+2φ($H_{2}O$)-φ(C$H_{4}$(g))-2φ($O_{2}$(g)) =(8.47+2$\times$6.78-7.13-2$\times$6.16) KJ/mol=2.58 KJ/mol Step 3: $\Delta$$H_{R}$$^{\circ}$(500K)=$\Delta$$H_{R}$$^{\circ}$(298.15K)+(Net change of enthalpy from step 2) = (-802.34+2.58)KJ/mol$\approx$ -800KJ/mol
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.