College Physics (7th Edition)

Published by Pearson
ISBN 10: 0-32160-183-1
ISBN 13: 978-0-32160-183-4

Chapter 3 - Motion in Two Dimensions - Learning Path Questions and Exercises - Exercises - Page 102: 86

Answer

a). $t=2.55s$ b). For $t_{1}=\frac{1}{4}t$, $\theta=16.1^{\circ}$ c). For $t_{2}=\frac{1}{2}t$ $\theta=0^{\circ}$ with respect to x-direction. For $t_{3}=\frac{3}{4}t$ $\theta=-16.1^{\circ}$ in 4th quadrant, below +x-axis d). For $t_{1}$, Net velocity =$22.53m/s$, For $t_{2}$, Net velocity =$21.65m/s$, For $t_{3}$, Net velocity =$22.53m/s$,

Work Step by Step

a). $y=(u_{0}sin\theta)\,t-\frac{1}{2}gt^{2}$ $25sin30^{\circ}t-\frac{1}{2}9.8t^{2}=0$ t=2.55s b). $t_{1}=\frac{1}{4}t=\frac{2.5}{4}=0.625s$ $v_{x}=\frac{25\sqrt 3}{2} m/s$ $v_{y}=\frac{25}{2}-\frac{12.5}{2}=\frac{12.5}{2}$ $\theta=tan^{-1}(\frac{v_{y}}{v_{x}})$ Thus, $\theta=16.1^{\circ}$ c). For $t_{2}=\frac{1}{2}t$ $v_{x}=\frac{25\sqrt 3}{2} m/s$ $v_{y}=0 m/s$ $\theta=tan^{-1}\frac{v_{y}}{v_{x}}=0^{\circ}$ with respect to x-direction. For $t_{3}=\frac{3}{4}t$ $v_{x}=\frac{25\sqrt 3}{2} m/s$ $v_{y}=-\frac{25}{4} m/s$ $\theta=tan^{-1}\frac{v_{y}}{v_{x}}=-16.1^{\circ}$ in 4th quadrant, below +x-axis d). For $t_{1}$, Net velocity =$\sqrt (\frac{25\sqrt 3}{2})^{2}+(\frac{12.5}{2})^{2}=22.53m/s$, For $t_{2}$, Net velocity =$\sqrt (\frac{25\sqrt 3}{2})^{2}+(0)^{2}=21.65m/s$, For $t_{3}$, Net velocity =$\sqrt (\frac{25\sqrt 3}{2})^{2}+(-\frac{25}{4})^{2}=22.53m/s$,
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.