Answer
a. 15.15
b. 51.0.128
c. 10.160
Work Step by Step
The dot-decimal notation is a presentation format for numerical data expressed as a string of decimal numbers each separated by a full stop.
a. the solution is:
Step $1 :$ we divide the hexadecimal number to an 8-bit by 8-bit as following:
\begin{equation}
\begin{array}{c}{00001111} \\ {00001111}\end{array}
\end{equation}
Step $2 :$ convert each 8-bit to its equivalent decimal representations, as shown below:
\begin{equation}
\begin{array}{l}{00001111 \rightarrow 15} \\ {00001111 \rightarrow 15}\end{array}
\end{equation}
Step $3 :$ concatenate decimal numbers by dot, as shown below:
\begin{equation}
15.15
\end{equation}
----------------------------------
b. the solution is:
Step $1 :$ we divide the hexadecimal number to an 8-bit by 8-bit as following:
\begin{equation}
\begin{array}{c}{00110011} \\ {00000000} \\ {10000000}\end{array}
\end{equation}
Step $2 :$ convert each 8-bit to its equivalent decimal representation, as shown below:
\begin{equation}
\begin{array}{l}{00110011\rightarrow 51} \\ {00000000\rightarrow 0} \\ {10000000\rightarrow 128}\end{array}
\end{equation}
Step $3 :$ concatenate decimal numbers by dot, as shown below:
\begin{equation}
51.0.128
\end{equation}
----------------------------------
c. the solution is:
Step $1 :$ we divide the hexadecimal number to an 8-bit by 8-bit as following:
\begin{equation}
\begin{array}{c}{00001010} \\ {10100000}\end{array}
\end{equation}
Step $2 :$ convert each 8-bit to its equivalent decimal representations, as shown below:
\begin{equation}
\begin{array}{l}{00001010\rightarrow 10} \\ {10100000\rightarrow 160}\end{array}
\end{equation}
Step $3 :$ concatenate decimal numbers by dot, as shown below:
\begin{equation}
10.160
\end{equation}