Fundamentals of Electrical Engineering

Published by McGraw-Hill Education
ISBN 10: 0073380377
ISBN 13: 978-0-07338-037-7

Chapter 2 - Fundamentals of Electric Circuits - Part 1 Circuits - Homework Problems - Page 55: 2.44

Answer

$R_{eq}$ $=$ $10$ $ohms$ $i$ $=$ $0.9$ $A$ $i_{1}$ $=$ $0.8$ $A$ $v$ $=$ $7.2$ $volts$

Work Step by Step

The equivalent resistance of the parallel circuit can be solved by paralleling $72$ $ohms$ and $9$ $ohms$ resistors then series with $2$ $ohms$ resistors as shown below: $R_{eq}$ $=$ $\frac{72\times{9}}{72+9}$ + $2$ $R_{eq}$ $=$ $10$ $ohms$ Since the $2$ $ohms$ resistor is in series with the source, current $i$ is equal to $I_{T}$: $i$ $=$ $I_{T}$ $=$ $\frac{V}{R_{eq}}$ $i$ $=$ $\frac{9}{10}$ $i$ $=$ $0.9$ $A$ and therefore, the voltage across the $2$ $ohms$ resistor is: $v$ $=$ $0.9\times{2}$ $v$ $=$ $1.8$ $volts$ Using KVL, we will have: $V$ - $v$ - $v_{1}$ $=$ $0$ $9$ - $1.8$ - $v_{1}$ $=$ $0$ $v_{1}$ $=$ $7.2$ $volts$ The current $i_{1}$ can now be solved: $i_{1}$ $=$ $\frac{7.2}{9}$ $i_{1}$ $=$ $0.8$ $A$ Since the $9$ $ohms$ and $72$ $ohms$ resistors are parallel, they have the same voltage value. $v_{1}$ $=$ $v$ $=$ $7.2$ $volts$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.