Fundamentals of Electrical Engineering

Published by McGraw-Hill Education
ISBN 10: 0073380377
ISBN 13: 978-0-07338-037-7

Chapter 2 - Fundamentals of Electric Circuits - Part 1 Circuits - Homework Problems - Page 55: 2.45

Answer

$R_{eq}$ $=$ $10$ $ohms$ $I_{2}$ $=$ $0.05$ $A$

Work Step by Step

To get the equivalent resistance, we must start simplifying the resistor values beginning from the one farthest from the source: $R_{5}$ and $R_{6}$ **parallel** $R_{56}$ $=$ $\frac{R_{5}\times{R_{6}}}{R_{5}+R_{6}}$ $=$ $\frac{4\times{4}}{4+4}$ $=$ $2$ $ohms$ $R_{4}$ and $R_{56}$ **series** $R_{456}$ $=$ $R_{4}$ + $R_{56}$ $=$ $22$ + $2$ $=$ $24$ $ohms$ $R_{456}$ and $R_{7}$ **parallel** $R_{4567}$ $=$ $\frac{R_{456}\times{R_{7}}}{R_{456}+R_{7}}$ $=$ $\frac{24\times{8}}{24+8}$ $=$ $6$ $ohms$ $R_{4567}$ and $R_{3}$ **series** $R_{34567}$ $=$ $R_{3}$ + $R_{4567}$ $=$ $4$ + $6$ $=$ $10$ $ohms$ $R_{34567}$ and $R_{2}$ **parallel** $R_{234567}$ $=$ $\frac{R_{34567}\times{R_{2}}}{R_{34567}+R_{2}}$ $=$ $\frac{10\times{90}}{10+90}$ $=$ $9$ $ohms$ $R_{234567}$ and $R_{1}$ **series** $R_{1234567}$ $=$ $R_{eq}$ $=$ $R_{1}$ + $R_{234567}$ $=$ $1$ + $9$ $=$ $10$ $ohms$ Refer to the attached figure below for the current directions. Since $R_{1}$ is in series with the voltage source, we can say that $I_{1}$ $=$ $I_{T}$. $I_{1}$ $=$ $\frac{V}{R_{eq}}$ $=$ $\frac{50}{10}$ $=$ $5$ $A$ and $V_{1}$ $=$ $I_{1}\times{R_{1}}$ $=$ $5\times{1}$ $=$ $5$ $volts$ To get the value of $i$ or $I_{2}$, we will need to get the value of $V_{2}$ using the voltage divider method: $V_{2}$ $=$ $V_{1}\times{\frac{R_{2}}{R_{2}+{R_34567}}}$ $=$ $5\times{\frac{90}{90+10}}$ $=$ $4.5$ $volts$ and $I_{2}$ $=$ $\frac{V_{2}}{R_{2}}$ $=$ $\frac{4.5}{90}$ $=$ $0.05$ $A$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.