Fundamentals of Electrical Engineering

Published by McGraw-Hill Education
ISBN 10: 0073380377
ISBN 13: 978-0-07338-037-7

Chapter 2 - Fundamentals of Electric Circuits - Part 1 Circuits - Homework Problems - Page 56: 2.46

Answer

$R$ = $ 4 $ $ohms$

Work Step by Step

First, let us compute the equivalent resistance $(R_{eq})$ seen by the source. (NOTE: Please refer to the attached diagram for the computation of $(R_{eq}$) $R_{5}$ and $R_{6}$ in parallel: $R_{56}$ $=$ $\frac{4\times4}{4+4}$ $=$$ 2 $ $ ohms $ $R_{4}$ and $R_{56}$ in series: $R_{456}$ $=$ $2+6$ $=$$ 8 $ $ ohms $ $R_{456}$ and $R_{7}$ in parallel: $R_{4567}$ $=$ $\frac{8\times24}{8+24}$ $=$$ 6 $ $ ohms $ $R_{3}$ and $R_{4567}$ in series: $R_{34567}$ $=$ $4+6$ $=$$ 10 $ $ ohms $ $R_{2}$ and $R_{34567}$ in parallel: $R_{234567}$ $=$ $\frac{15\times10}{15+10}$ $=$$ 6 $ $ ohms $ $R$ and $R_{234567}$ in series: $R_{eq}$ $=$ $6$ $+$ $R$ $ohms $ Given the power absorbed by $R_{2}$, we can solve for the voltage across it: $P_{R_{2}}$ $=$ $\frac{(V_{R_{2}})^{2}}{R_{2}}$ $15$ $=$ $\frac{(V_{R_{2}})^{2}}{15}$ $(V_{R_{2}})^{2}$ $=$ $15\times15$ $V_{R_2}$ $=$ $\sqrt 225$ $V_{R_2}$ $=$ $15$ $volts$ and the current $I_{R_{2}}$ passing through $R_{2}$ is: $I_{R_2}$ $=$ $\frac{V_{R_2}}{R_{2}}$ $=$ $\frac{15}{15}$ $=$ $1$ $ampere$ Using $V_{R_{2}}$, we can solve $V_{R_{3}}$ using voltage divider: $V_{R_{3}}$ $=$ $V_{R_{2}}$ $\times\frac{R_{3}}{R_{3}+R_{4567}}$ $=$ $15$ $\times\frac{4}{4+6}$ $=$$6$ $volts$ and the current $I_{R_{3}}$ passing through $R_{3}$ is: $I_{R_{3}}$ $=$ $\frac{V_{R_{3}}}{R_3}$ $=$ $\frac{6}{4}$ $=$ $1.5$ $amperes$ Using $I_{R_{2}}$ and $I_{R_{3}}$, we can now solve for $I_{R_{1}}$ or the total circuit current $I_{T}$: $I_{T}$ $=$ ${I_{R_{2}} +I_{R_{3}}}$ $=$ $1+1.5$ $=$ $2.5$ $amperes$ Now using the source voltage $V_{T}$ and $V_{R_{2}}$, we can compute for the voltage across $V_{R}$: $V_{T}$ $=$ $V_{R}$ $+$ $V_{R_{2}}$ $25$ $=$ $V_{R}$ + $15$ $V_{R}$ $=$ $10$ $volts$ Now that we have $V_{R}$ and $I_{R}$, we can now compute for $R$ using ohm's law: $I_{R}$ $=$ $\frac{V_{R}}{R}$ $=$ $\frac{10}{2.5}$ $=$ $4$ $ohms$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.