Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 2 - Force Vectors - Section 2.4 - Addition of a System of Coplanar Forces - Fundamental Problems - Page 39: 7

Answer

Using scalar notion: $F_{1x}=0$ $F_{1y}=300\uparrow$ $F_{2x}=225\sqrt 2\;N\leftarrow$ $F_{2y}=225\sqrt 2\;N\uparrow$ $F_{3x}=360\;N\rightarrow$ $F_{3y}=480\;N\uparrow$

Work Step by Step

By the parallelogram law, we can resolve each force into its $x$ and $y$ components. Let $F_{1x}$ and $F_{1y}$ are the $x$ and $y$ components of $\vec {F_1}$ force. Using scalar notation to represent these components, we have $F_{1x}=300\cos90^\circ\;N=0$ $F_{1y}=300\sin90^\circ\;N=300\;N=300\uparrow$ Let $F_{2x}$ and $F_{2y}$ are the $x$ and $y$ components of $\vec {F_2}$ force. Using scalar notation to represent these components, we have $F_{2x}=-450\cos45^\circ\;N=-225\sqrt 2\;N=225\sqrt 2\;N\leftarrow$ $F_{2y}=450\sin45^\circ\;N=225\sqrt 2\;N=225\sqrt 2\;N\uparrow$ Let $F_{3x}$ and $F_{3y}$ are the $x$ and $y$ components of $\vec {F_3}$ force. Using proportional parts of similar triangles, we have $\frac{F_{3x}}{600\;N}=\frac{3}{5}$ or, $F_{3x}=600\;N\Big(\frac{3}{5}\Big)=360\;N$ Similarly, $\frac{F_{3y}}{600\;N}=\frac{4}{5}$ or, $F_{3y}=600\;N\Big(\frac{4}{5}\Big)=480\;N$ Using scalar notation to represent these components, we have $F_{3x}=480\;N=360\;N\rightarrow$ $F_{3y}=480\;N=480\;N\uparrow$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.