Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 2 - Force Vectors - Section 2.4 - Addition of a System of Coplanar Forces - Fundamental Problems - Page 39: 8

Answer

$F_R\approx567.26\;N$ $\theta\approx 38.1^\circ$

Work Step by Step

First, we resolve each force into its $x$ and $y$ components by the parallelogram law: Let $F_{1x}$ and $F_{1y}$ are the $x$ and $y$ components of $\vec {F_1}$ force, in which $F_1=300\;N$. Then we have $F_{1x}=300\cos0^\circ\;N=300\;N$ $F_{1y}=300\sin0^\circ\;N=0$ Let $F_{2x}$ and $F_{2y}$ are the $x$ and $y$ components of $\vec {F_2}$ force, in which $F_2=400\;N$. Then we have $F_{2x}=400\cos30^\circ\;N=200\sqrt 3\;N$ $F_{2y}=400\sin30^\circ\;N=200\;N$ Let $F_{3x}$ and $F_{3y}$ are the $x$ and $y$ components of $\vec {F_3}$ force, in which $F_3=250\;N$. Then we have Using proportional parts of similar triangles and considering the directions, we have $\frac{F_{3x}}{250\;N}=-\frac{4}{5}$ or, $F_{3x}=-250\;N\Big(\frac{4}{5}\Big)=-200\;N$ Similarly, $\frac{F_{3y}}{250\;N}=\frac{3}{5}$ or, $F_{3y}=250\;N\Big(\frac{3}{5}\Big)=150\;N$ Then, using scalar notation and indicating the positive directions of components along the $x$ and $y$ axes with symbolic arrows, we sum these components algebraically: Summing the x components, we have $\xrightarrow{+} (F_R)_x=\sum F_x$ or, $(F_R)_x=(300+200\sqrt 3-200)\;N=446.41\;N$ Summing the y components yields $+\uparrow (F_R)_y=\sum F_y$ or, $(F_R)_y=(0+200+150)\;N=350$ $\therefore$ The resultant force has a magnitude of $F_R=\sqrt {[(F_R)_x]^2+[(F_R)_y]^2}$ or, $F_R=\sqrt {(446.41)^2+(350)^2}\;N$ or, $F_R\approx567.26\;N$ The direction $\theta$ of resultant force $\vec F_R$, measured from positive $x$ axis, is $\theta=\tan^{-1}\Big(\frac{350\;N}{446.41\;N}\Big)\approx 38.1^\circ$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.