Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version 8th Edition

Published by Wiley
ISBN 10: 1119080703
ISBN 13: 978-1-11908-070-1

Chapter 1 - Problems - Page 34: 1.67

Answer

For $ T=10^{\circ} \mathrm{C}$: $\mu=1.765 \times 10^{-5} \frac{\mathrm{N} \cdot 5}{\mathrm{~m}^2}$ For $ T=90^{\circ} \mathrm{C}$: $\mu=2.14 \times 10^{-5} \frac{\mathrm{N} \cdot 5}{\mathrm{~m}^2}$

Work Step by Step

$$ \begin{gathered} \mu=\frac{C T^{\frac{3}{2}}}{T+S}=\frac{\left(1.458 \times 10^{-6}\right) T^{\frac{3}{2}}}{T+110.4 \mathrm{~K}} \\ \text { For } T=10^{\circ} \mathrm{C} \\ T=283.15 \mathrm{~K}, \\ \mu=\frac{\left(1.458 \times 10^{-6}\right)(283.15 \mathrm{k})^{3 / 2}}{283.15+110.4}=1.765 \times 10^{-5} \frac{\mathrm{N} \cdot 5}{\mathrm{~m}^2} \end{gathered} $$ From Table B.4, $\mu=1.76 \times 10^{-5} \frac{\mathrm{N} . \mathrm{s}}{\mathrm{m}^2}$ For $T=90^{\circ} \mathrm{C}$ $$ \mathrm{T}=363.15 \mathrm{~K} \text {, } $$ $$ \mu=\frac{\left(1.458 \times 10^{-6}\right)(363.15)^{3 / 2}}{363.15+110.4}=2.13 \times 10^{-5} \frac{\mathrm{N} \cdot \mathrm{s}}{\mathrm{Nmm}^2} $$ From Table B. $4, \mu=2.14 \times 10^{-5} \frac{\mathrm{N} \cdot \mathrm{S}}{\mathrm{m}^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.