Answer
$\mu=0.300 \frac{N.s}{m^2}$
Work Step by Step
$\begin{aligned} & \tau=\mu \frac{d u}{d y} \\ & \frac{d u}{d y}=\frac{U}{b} \\ & \mu=\frac{\tau}{\left(\frac{U}{b}\right)}=\frac{150 \frac{\mathrm{N}}{\mathrm{m}^2}}{\left(\frac{1 \frac{\mathrm{m}}{\mathrm{s}}}{0.002 \mathrm{~m}}\right)}=0.300 \frac{\mathrm{N} \cdot \mathrm{s}}{\mathrm{m}^2} \\ & \end{aligned}$