Answer
$\tau=4.48\times10^{-2}{\frac{\mathrm{N}}{\mathrm{m}^{2}}}$
[in the direction of the flow ]
Work Step by Step
$\quad\tau=\mu{\frac{d u}{d y}}$
${\frac{d u}{d y}}=U\left({\frac{2}{h}}-{\frac{y^{2}}{h^{2}}}\right)$
$\left({\frac{d u}{d y}}\right)_{y=0}={\frac{2D}{h}}$
$\tau=\mu\left({\frac{2U}{h}}\right)=(1.12\times10^{-3})(2){\frac{(2)}{(0.1)}}=4.48\times10^{-2}{\frac{\mathrm{N}}{\mathrm{m}^{2}}}$
[in the direction of the flow ]