System Dynamics 3rd Edition

Published by McGraw-Hill Education
ISBN 10: 0073398063
ISBN 13: 978-0-07339-806-8

Chapter 2 - Problems - Page 114: 2.48

Answer

Transform the equation. $$X(s)=\frac{F(s)}{s^{2}+8 s+1}$$ Thus $$F(s)-X(s)=F(s)-\frac{F(s)}{s^{2}+8 s+1}=\frac{s^{2}+8 s}{s^{2}+8 s+1} F(s)$$ Because $F(s)=6 / s^{2}$ $$F(s)-X(s)=\frac{s^{2}+8 s}{s^{2}+8 s+1} \frac{6}{s^{2}}=\frac{s+8}{s^{2}+8 s+1} \frac{6}{s}$$ From the final value theorem, $$f_{s s}-x_{s s}=\lim _{s \rightarrow 0} s[F(s)-X(s)]=\lim _{s \rightarrow 0} s \frac{s+8}{s^{2}+8 s+1} \frac{6}{s}=8$$

Work Step by Step

Transform the equation. $$X(s)=\frac{F(s)}{s^{2}+8 s+1}$$ Thus $$F(s)-X(s)=F(s)-\frac{F(s)}{s^{2}+8 s+1}=\frac{s^{2}+8 s}{s^{2}+8 s+1} F(s)$$ Because $F(s)=6 / s^{2}$ $$F(s)-X(s)=\frac{s^{2}+8 s}{s^{2}+8 s+1} \frac{6}{s^{2}}=\frac{s+8}{s^{2}+8 s+1} \frac{6}{s}$$ From the final value theorem, $$f_{s s}-x_{s s}=\lim _{s \rightarrow 0} s[F(s)-X(s)]=\lim _{s \rightarrow 0} s \frac{s+8}{s^{2}+8 s+1} \frac{6}{s}=8$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.