System Dynamics 3rd Edition

Published by McGraw-Hill Education
ISBN 10: 0073398063
ISBN 13: 978-0-07339-806-8

Chapter 2 - Problems - Page 114: 2.49

Answer

The roots are $s=-2$ and $-4 .$ Thus $$X(s)=\frac{1-e^{-3 s}}{(s+2)(s+4)}$$ Let $$F(s)=\frac{1}{(s+2)(s+4)}=\frac{1}{2}\left(\frac{1}{s+2}-\frac{1}{s+4}\right)$$ so $$f(t)=\frac{1}{2}\left(e^{-2 t}-e^{-4 t}\right)$$ From Property 6 of the Laplace transform, $$x(t)=\frac{1}{2}\left(e^{-2 t}-e^{-4 t}\right)-\frac{1}{2}\left[e^{-2(t-3)}-e^{-4(t-3)}\right] u_{s}(t-3)$$

Work Step by Step

The roots are $s=-2$ and $-4 .$ Thus $$X(s)=\frac{1-e^{-3 s}}{(s+2)(s+4)}$$ Let $$F(s)=\frac{1}{(s+2)(s+4)}=\frac{1}{2}\left(\frac{1}{s+2}-\frac{1}{s+4}\right)$$ so $$f(t)=\frac{1}{2}\left(e^{-2 t}-e^{-4 t}\right)$$ From Property 6 of the Laplace transform, $$x(t)=\frac{1}{2}\left(e^{-2 t}-e^{-4 t}\right)-\frac{1}{2}\left[e^{-2(t-3)}-e^{-4(t-3)}\right] u_{s}(t-3)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.