Answer
We know that ,
$W_{cycle}$ = $Q_{cycle}$ = $Q_{in}$ - $Q_{out}$
here values of $Q_{in}$ and $Q_{out}$ are 17 $\times$ $10^{6}$ and 12 $\times$ $10^{6}$
putting the values of these quantities we get ,
$W_{cycle}$ = (17-12) $\times$ $10^{6}$ =5 $\times$ $10^{6}$
efficiency = $W_{cycle}$/$Q_{in}$ =(5 $\times$ $10^{6}$) /(17 $\times$ $10^{6}$) = 0.294 or (29.4 %)
Work Step by Step
We know that ,
$W_{cycle}$ = $Q_{cycle}$ = $Q_{in}$ - $Q_{out}$
here values of $Q_{in}$ and $Q_{out}$ are 17 $\times$ $10^{6}$ and 12 $\times$ $10^{6}$
putting the values of these quantities we get ,
$W_{cycle}$ = (17-12) $\times$ $10^{6}$ =5 $\times$ $10^{6}$
efficiency = $W_{cycle}$/$Q_{in}$ =(5 $\times$ $10^{6}$) /(17 $\times$ $10^{6}$) = 0.294 or (29.4 %)