Materials Science and Engineering: An Introduction

Published by Wiley
ISBN 10: 1118324579
ISBN 13: 978-1-11832-457-8

Chapter 2 - Atomic Structure and Interatomic Bonding - Questions and Problems - Page 49: 2.20

Answer

$E_{A}=\frac{-2.34}{r}$ $E_{B}=\frac{3.34\times 10^{-4}}{r^8}$

Work Step by Step

Given that $ r_{0}=0.38nm$,$E_{0}=-5.37eV$, $n=8$ We find that: $r_{0}=(\frac{A}{nB})^{(\frac{1}{1-n})}$ $E_{0}=\frac{-A}{(\frac{A}{nB})^{(\frac{1}{1-n})}}+\frac{B}{(\frac{A}{nB})^{(\frac{n}{1-n})}}$ $0.38=(\frac{A}{8B})^{(\frac{1}{1-8})}$ ${A}=(0.38)^{-7}({8B})$ $-5.37=\frac{-A}{(\frac{A}{8B})^{(\frac{1}{1-8})}}+\frac{B}{(\frac{A}{8B})^{(\frac{8}{1-8})}}$ $-5.37=\frac{-(0.38)^{-7}({8B})}{(\frac{(0.38)^{-7}({8B})}{8B})^{(\frac{1}{1-8})}}+\frac{B}{(\frac{(0.38)^{-7}({8B})}{8B})^{(\frac{8}{1-8})}}$ $B=3.34\times10^{-4}$ $A=(0.38)^{-7}({8B})=(0.38)^{-7}({8\times3.34\times10^{-4}})=2.34$ Thus: $E_{A}=\frac{-2.34}{r}$ $E_{B}=\frac{3.34\times 10^{-4}}{r^8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.