Numerical Methods for Engineers

Published by McGraw-Hill Science/Engineering/Math
ISBN 10: 0073401064
ISBN 13: 978-0-07340-106-5

Chapter 1 - Mathematical Modeling and Engineering Problem Solving - Problems - Page 24: 1.16b

Answer

\begin{equation} \frac{d V}{d t}=\frac{\ln 2}{20} V(t) \end{equation}

Work Step by Step

\begin{equation} \begin{array}{l}{\text { First, calculate the volume of one cell. }} \\ {\qquad V_{c e l l}=\frac{4}{3} r_{c e l l}^{3} \pi=\frac{4}{3}\left(\frac{20}{2} \cdot 10^{-6}\right)^{3} \pi=4.18879 \times 10^{-15} m^{3}} \\ {\text { The volume of the tumor is the volume of } N \text { such cells. Hence, }}\end{array} \end{equation} \begin{equation} \begin{array}{l}{V(t)=V_{c e l l} N(t)} \\ {\Rightarrow \frac{d V}{d t}(t)=\frac{d N}{d t}(t) \cdot V_{c e l l}=\frac{\ln 2}{20} N(t) \cdot V_{c e l l}} \\ {\Rightarrow \frac{d V}{d t}=\frac{\ln 2}{20} V(t)}\end{array} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.