Answer
a) $\exists x(P(x)\land Q(x))$
b) $\exists x(P(x)\land \neg Q(x))$
c) $\forall x(P(x)\lor Q(x))$
d) $\neg \exists x(P(x)\lor Q(x))$
Work Step by Step
We replace the quantifiers first, with "there is" going to $\exists$, "every" going to $\forall$, and "no" going to $\neg \exists$. Then, we replace the statements with $P(x)$ and $Q(x)$ to obtain:
a) $\exists x(P(x)\land Q(x))$
b) $\exists x(P(x)\land \neg Q(x))$
c) $\forall x(P(x)\lor Q(x))$
d) $\neg \exists x(P(x)\lor Q(x))$