Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 1 - Section 1.4 - Predicates and Quantifiers - Exercises - Page 54: 30

Answer

a)$P(1,3)\lor P(2,3)\lor P(3,3)$ b)$P(1,1)\land P(1,2)\land P(1,3)$ c)$P(1,3)\lor P(2,3)\lor P(3,3)$ d)$\neg P(1,2)\land \neg P(2,2)\land \neg P(3,2)$

Work Step by Step

a) x can be 1,2 or 3 and there has to exists 1 value out of the three for the propositional function. $$P(1,3)\lor P(2,3)\lor P(3,3)$$ b) y can be 1,2 or 3 and all values of y are possible. $$P(1,1)\land P(1,2)\land P(1,3)$$ c) y can be 1,2 or 3 and there has to exists 1 value out of the three for the propositional function. $$\neg P(2,1)\lor \neg P(2,2)\lor \neg P(2,3)$$ d) x can be 1,2 or 3 and all values have to be possible. $$\neg P(1,2)\land \neg P(2,2)\land \neg P(3,2)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.