Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 1 - Section 1.6 - Rules of Inference - Exercises - Page 80: 28

Answer

We can set this up in two-column format. The proof is rather long but straightforward if we go one step at a time. $\begin{array}{ll}{\textbf { Step }} & {\textbf { Reason }} \\ {1 . \exists x \neg P(x)} & {\text { Premise }} \\ {\text { 2. } P(c)} & {\text { Existential iustantiation using }(1)} \\ {\text { 3. } \forall x(P(x) \vee Q(x))} & {\text { Premise }}\end{array}$ $\begin{array}{ll}{\text { 4. } P(c) \vee Q(c)} & {\text { Universal instantiation using }(3)} \\ {\text { 5. } Q(c)} & {\text { Disjunctive syllogism using }(4) \text { and }(2)} \\ {\text { 6. } \forall x(\neg(x) \vee S(x))} & {\text { Premise }} \\ {\text { 7. }-Q(c) \vee S(c)} & {\text { Universal instantiation using }(6)}\end{array}$ $\begin{array}{ll}{\text { 8. } S(c)} & {\text { Disjunctive syllogism using }(5) \text { and }(7), \text { since } \neg \neg Q(c) \equiv Q(c)} \\ {\text { 9. } \forall x(R(x) \rightarrow \neg S(x))} & {\text { Prenise }} \\ {\text { 10. } R(c) \rightarrow \neg S(c)} & {\text { Universal instantiation using }(9)}\end{array}$ $\begin{array}{ll}{\text { 11. } \neg R(c)} & \quad\quad\quad\quad{\text { Modus tollens using }(8) \text { and }(10), \text { since } \neg \sim S(c) \equiv S(c)} \\ {\text { 12. } \exists x \neg R(x)} & \quad\quad\quad\quad{\text { Existential generalization using }(11)}\end{array}$

Work Step by Step

We can set this up in two-column format. The proof is rather long but straightforward if we go one step at a time. $\begin{array}{ll}{\textbf { Step }} & {\textbf { Reason }} \\ {1 . \exists x \neg P(x)} & {\text { Premise }} \\ {\text { 2. } P(c)} & {\text { Existential iustantiation using }(1)} \\ {\text { 3. } \forall x(P(x) \vee Q(x))} & {\text { Premise }}\end{array}$ $\begin{array}{ll}{\text { 4. } P(c) \vee Q(c)} & {\text { Universal instantiation using }(3)} \\ {\text { 5. } Q(c)} & {\text { Disjunctive syllogism using }(4) \text { and }(2)} \\ {\text { 6. } \forall x(\neg(x) \vee S(x))} & {\text { Premise }} \\ {\text { 7. }-Q(c) \vee S(c)} & {\text { Universal instantiation using }(6)}\end{array}$ $\begin{array}{ll}{\text { 8. } S(c)} & {\text { Disjunctive syllogism using }(5) \text { and }(7), \text { since } \neg \neg Q(c) \equiv Q(c)} \\ {\text { 9. } \forall x(R(x) \rightarrow \neg S(x))} & {\text { Prenise }} \\ {\text { 10. } R(c) \rightarrow \neg S(c)} & {\text { Universal instantiation using }(9)}\end{array}$ $\begin{array}{ll}{\text { 11. } \neg R(c)} & \quad\quad\quad\quad{\text { Modus tollens using }(8) \text { and }(10), \text { since } \neg \sim S(c) \equiv S(c)} \\ {\text { 12. } \exists x \neg R(x)} & \quad\quad\quad\quad{\text { Existential generalization using }(11)}\end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.