Answer
$$A=\frac{C^2}{4\pi}$$
Work Step by Step
The area of a circle is given by:
$$A=\pi r^2(1)$$
From the formula of circumference ($C$), we can define $r$:
$C=2\pi r$
$r=\frac{C}{2\pi}$
We simply substitute the value of $r$ in the first equation and get the following:
$A=\pi (\frac{C}{2\pi})^2$ $= >$ $\pi \times \frac{C^2}{2^2\pi^2}$ $= >$ $\frac{C^2}{4\pi}$
$$A=\frac{C^2}{4\pi}$$