Answer
$$\text{A}$$
Work Step by Step
Add the equations together to obtain:
$\left\{ \begin{array}{lr} 3x + y =-7\\
\underline{4x-y=-14}\\
\end{array} \right.$
$\space \space \space 7x\space \space \space \space \space \space=-21$
Divide both sides by $7$ to obtain:
\begin{align*}
\dfrac{7x}{7}&=\dfrac{-21}{7}\\\\
x\space \space \space&=-3
\end{align*}
Use either equation to solve for $y$ by substituting $-3$ to $x$:
\begin{align*}
3x+y&=-7\\
3(-3)+y&=-7\\
-9+y&=-7\\
y&=-7+9\\
y&=2
\end{align*}
Therefore, the solution is $(-3, 2)$ so the answer is Option $\text{A}$.