Answer
$d=\frac{11}{4}$
Work Step by Step
$$\begin{align*}
15-5&=5+4(2d-3)-5 &\text{Subtract 5 from each side.}\\
10&=4(2d-3) &\text{Simplify.}\\
\frac{10}{4}&=\frac{4(2d-3)}{4} &\text{Divide 4 to both sides.}\\
\frac{5}{2}&=2d-3 &\text{Simplify.}\\
\frac{5}{2}+3&=2d-3+3 &\text{Add 3 to both sides.}\\
\frac{11}{2}&=2d &\text{Simplify.}\\
\frac{\frac{11}{2}}{2}&=\frac{2d}{2} &\text{Divide 2 to both sides.}\\
\frac{11}{4}&=d
\end{align*}$$
Check the answer by substituting $\frac{1}{4}$ to the variable $d$ in the given equation.
$$\begin{align*}
15&=5+4(2d-3)\\
15&\stackrel{?}{=}5+4\left[2\cdot\frac{11}{4}-3\right]\\
15&\stackrel{?}{=}5+2\cdot11-12\\
15&\stackrel{\checkmark}{=}15
\end{align*}$$
Thus, the solution is $d=\frac{11}{4}$.