Answer
$-\dfrac{5}{8}$
Work Step by Step
\begin{array}{l}
\text{ To evaluate the given expression, perform the following steps:}\\
{\textstyle \begin{array}{|l l|l|}
\hline
=\left[ -\dfrac{5}{8} +\dfrac{2}{5}\right] -\left(\dfrac{3}{2} -\dfrac{11}{10}\right) & & \text{Apply the rule} \ a-( -b) \ =\ a+b\\
& & \\
\hline
\begin{array}{l}
=\left[ -\dfrac{5( 5)}{8( 5)} +\dfrac{2( 8)}{5( 8)}\right] -\left(\dfrac{3}{2} -\dfrac{11}{10}\right)\\
\\
=\left[ -\dfrac{25}{40} +\dfrac{16}{40}\right] -\left(\dfrac{3}{2} -\dfrac{11}{10}\right)
\end{array} & & \begin{array}{l}
\text{The factors of } 8\ \text{are} \ 2^{3}\text{ and the factors of five are}\\
5\text{ and } 1\text{. Thus the LCM of } 8 \text{ and } 5\text{ is } 2^{3}(5)\text{ or } 40\\
\text{which is the LCD of the first fraction grouping.}\\
\text{We can multiply top and bottom of five-eights }\\
\text{by } 5\text{ and multiply top and bottom of two-fifths}\\
\text{by } 8\text{ to express both fractions in terms of their} \ \ \\
\text{common denominator. }
\end{array}\\
& & \\
\hline
\begin{array}{l}
=\left[ -\dfrac{25}{40} +\dfrac{16}{40}\right] -\left(\dfrac{3( 5)}{2( 5)} -\dfrac{11}{10}\right)\\
\\
=\left[ -\dfrac{25}{40} +\dfrac{16}{40}\right] \ -\left(\dfrac{15}{10} -\dfrac{11}{10}\right)
\end{array} & & \begin{array}{l}
\text{The LCM of } 2\text{ and } 10\text{ is ten which is the LCD of}\\
\text{the 2nd fraction grouping. We can multiply top }\\
\text{and bottom of three-halves by 5 to express }\\
\text{three-halfs and eleven-tenths in terms of a }\\
\text{common denominator.}
\end{array}\\
& & \\
\hline
\begin{array}{l}
=\left[\dfrac{16}{40} -\dfrac{25}{40}\right] -\left(\dfrac{15}{10} -\dfrac{11}{10}\right)\\
\\
=\left[\dfrac{16-25}{40}\right] -\left(\dfrac{15-11}{10}\right)
\end{array} & & \begin{array}{l}
\text{Re-arrange the first grouping by applying the }\\
\text{commutative property then apply the following }\\
\text{fraction rule to both groupings} :\\
\\
\dfrac{a}{c} -\dfrac{b}{c} =\dfrac{a-b}{c}
\end{array}\\
& & \\
\hline
\begin{array}{l}
=\left[\dfrac{-9}{40}\right] -\left(\dfrac{4}{10}\right)\\
\\
=\dfrac{-9}{40} -\dfrac{4( 4)}{10( 4)}\\
\\
=\dfrac{-9}{40} -\dfrac{16}{40}
\end{array} & & \begin{array}{l}
\text{The LCM of } 10\text{ and } 40\text{ is forty which is the LCD }\\
\text{of the remaining fraction pair. Multiply top and }\\
\text{bottom of four-tenths by } 4\text{ to express both }\\
\text{fractions in terms of their common denominator}\\
\text{then apply the }\dfrac{a}{c} -\dfrac{b}{c} =\dfrac{a-b}{c}\text{ rule once more.} \
\end{array}\\
& & \\
\hline
\begin{array}{l}
=\dfrac{-9-16}{40}\\
\\
=\dfrac{-25}{40} =-\dfrac{25}{40}
\end{array} & & \text{Simplify.}\\\\
\hline
\begin{array}{l}
=-\left(\dfrac{5( 5)}{8( 5)}\right)\\
\\
=-\dfrac{5}{8}
\end{array} & & \begin{array}{l}
\text{Observe that five is common to } 25\text{ and} \ 40\text{.}\\
\text{Since} \ \dfrac{5}{5} =1\text{ we can reduce the fraction by a }\\
\text{factor of one.}
\end{array}\\\\
\hline
\end{array}}
\end{array}