Answer
$\displaystyle \begin{array}{|r|c|}
\hline
\mathrm{Man's\ BAC} & \mathrm{0.024}\\
\hline
\mathrm{Woman's\ BAC} & \mathrm{0.023}\\
\hline
\end{array}$
Work Step by Step
$\displaystyle \begin{array}{ l }
\text{The BAC Formula for a person who has been drinking alcohol is} :\\
\#\ \text{oz} \ \times \ \%\ \text{alcohol} \ \times \dfrac{75}{1000} \times \dfrac{1}{\text{lbs}} - \text{hrs} \times \dfrac{15}{1000}\\
\\\\
\begin{array}{|l|l|}
\hline
a) & \text{Calculate the man's BAC concentration level} :\\
\hline
& \begin{array}{{>{\displaystyle}l}}
\text{If the man weighed 25 lbs heavier than his current weight, he would}\\
\text{weigh approximately 215 lbs. Considering this while all other variables}\\
\text{remain unchanged, his BAC concentration level is found by} :\\
\\
48\ \times 3.2\ \times \dfrac{75}{1000} \ \times \dfrac{1}{215} -2\ \times \dfrac{15}{1000}\\
\\
\text{Applying the order of operations as follows} :\\
\\
\begin{array}{ l }
\begin{array}{{>{\displaystyle}l}}
\text{Man's BAC}\\
=\left( 48\ \times 3.2\ \times \dfrac{75}{1000} \ \times \dfrac{1}{215}\right) -\left( 2\ \times \dfrac{15}{1000}\right)\\
\end{array}\\
\begin{array}{{>{\displaystyle}l}}
\approx ( 0.053581395348838) \ -\ ( 0.03)\\
\approx 0.024
\end{array}
\end{array}
\end{array}\\
& \\
\hline
b.) & \text{Calculate the woman's BAC concentration level} :\\
\hline
& \begin{array}{{>{\displaystyle}l}}
\text{If the woman weighed 25 lbs heavier than her current weight, she would}\\
\text{weigh approximately 160 lbs. Considering this while all other variables}\\
\text{remain unchanged, her BAC concentration level is found by:}\\
\\
36\ \times 4\ \times \dfrac{75}{1000} \ \times \dfrac{1}{160} -3\ \times \dfrac{15}{1000}\\
\\
\text{Applying the order of operations as follows:}\\
\begin{array}{ l }
\begin{array}{{>{\displaystyle}l}}
\text{Woman's BAC}\\
=\left( 36\ \times 4\ \times \dfrac{75}{1000} \ \times \dfrac{1}{160}\right) -\left( 3\ \times \dfrac{15}{1000}\right)\\
\end{array}\\
\begin{array}{{>{\displaystyle}l}}
=\left(\dfrac{27}{400}\right) \ -\ \left(\dfrac{45}{1000}\right)\\
=\dfrac{27}{400} -\dfrac{9}{200}\\
=\dfrac{27}{400} -\dfrac{18}{400}\\
=\dfrac{9}{400}\\
\approx 0.023
\end{array}
\end{array}
\end{array}\\
& \\
\hline
& \begin{array}{{>{\displaystyle}l}}
\text{These calculations seem to suggest that if all other variables,}\\
\text{remain the same, an increase in weight will result in a decrease in}\\
\text{BAC output.}
\end{array}\\
\hline
\end{array}
\end{array}$