College Algebra (11th Edition)

Published by Pearson
ISBN 10: 0321671791
ISBN 13: 978-0-32167-179-0

Chapter R - Test - Page 78: 21

Answer

$\dfrac{x^4(x+1)}{3(x^2+1)}$

Work Step by Step

Factoring the expressions and then cancelling the common factors between the numerator and the denominator, the given expression, $ \dfrac{5x^2-9x-2}{30x^3+6x^2}\div\dfrac{x^4-3x^2-4}{2x^8+6x^7+4x^6} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{5x^2-9x-2}{30x^3+6x^2}\cdot\dfrac{2x^8+6x^7+4x^6}{x^4-3x^2-4} \\\\= \dfrac{(5x+1)(x-2)}{6x^2(5x+1)}\cdot\dfrac{2x^6(x^2+3x+2)}{(x^2-4)(x^2+1)} \\\\= \dfrac{(5x+1)(x-2)}{6x^2(5x+1)}\cdot\dfrac{2x^6(x+2)(x+1)}{(x+2)(x-2)(x^2+1)} \\\\= \dfrac{(\cancel{5x+1})(\cancel{x-2})}{\cancel{2}(3)\cancel{x^2}(\cancel{5x+1})}\cdot\dfrac{\cancel{2}\cancel{x^2}(x^4)(\cancel{x+2})(x+1)}{(\cancel{x+2})(\cancel{x-2})(x^2+1)} \\\\= \dfrac{x^4(x+1)}{3(x^2+1)} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.