Answer
Evaluating $3+6(x-2)^{3}$ for $x=4$ gives $51$
Work Step by Step
Evaluate $3 + 6(x - 2)^{3}$ if x = 4.
Let's substitute the value of x in the given expression.
if x = 4
=$3 + 6(4 - 2)^{3}$
Apply the PEMDAS rule:
Perform the operation inside the parentheses
=$3 + 6(4 - 2)^{3}$
=$3 + 6(2)^{3}$
Next, Expand the exponent
=$3 + 6(2· 2· 2)$
=$3 + 6(8)$
Then, Multiply 6 and 8
=$3 + 6(8)$
=$3 + 48$
To find the final answer. Just add 3 and 48.
=$3 + 48$
=$51$
Therefore, $3 + 6(x - 2)^{3}$ if x = 4 gives 51.