Answer
See the explanation
Work Step by Step
$\begin{array}
xx&x+\frac{1}{x}\\
1&2\\
3&3.33\\
\frac{1}{2}&2.5\\
\frac{9}{10}&2.01\\
\frac{99}{100}&2.0001
\end{array}$
For $x\gt0, x+\frac{1}{x} \geq2$.
b.
$x+\frac{1}{x} \geq2,$ For $x\gt0$.
$x\left(x+\frac{1}{x}\right)\geq2x,$
$x^2+1\geq2x,$
$x^2-2x+1\geq0,$
$(x-1)(x-1)\geq0,$
$x\geq1$ or $x\geq1$.
For $x+\frac{1}{x}\geq2, x\geq1$.
Therefore, It is a true statement