Answer
\[5y^2+x^2=K\]
![](https://gradesaver.s3.amazonaws.com/uploads/solution/e057a45f-befa-4491-b920-b6a42ca495b6/result_image/1595874376.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJVAXHCSURVZEX5QQ%2F20250218%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250218T115223Z&X-Amz-Expires=900&X-Amz-SignedHeaders=host&X-Amz-Signature=baa73a2318a7645d9bcea2be745c5f94a07e5428907e42de4e27f2326f1b66a9)
Work Step by Step
Given that, $y=cx^5$ _____(1)
Differentiating both side with respect to $x$
\[\frac{dy}{dx}=5cx^4\]
From (1)
$\frac{dy}{dx}=5(\frac{y}{x^5})x^4=\frac{5y}{x}$ ____(2)
Replace $\frac{dy}{dx}$ by $\frac{-dx}{dy}$ in (2) [ For orthogonal trajectories]
$\frac{-dx}{dy}=\frac{5y}{x}$
$-xdx = 5ydy$
Integrating, $-\int xdx= \int 5ydy$
$k-\frac{x^2}{2}=\frac{5y^2}{2}$
$5y^2+x^2=K$, where $K = 2k$
Hence family of orthogonal trajectries to (1) is $5y^2+x^2=K$.
![](https://gradesaver.s3.amazonaws.com/uploads/solution/e057a45f-befa-4491-b920-b6a42ca495b6/steps_image/small_1595874376.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJVAXHCSURVZEX5QQ%2F20250218%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250218T115223Z&X-Amz-Expires=900&X-Amz-SignedHeaders=host&X-Amz-Signature=884cb8ee40470117644544ae050a48f2cd9fec660dd4e61b945fc9333b0e15ab)