Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.10 Numerical Solution to First-Order Differential Equations - Problems - Page 100: 1

Answer

The solution is $y_{10}=4.89$

Work Step by Step

We have $$y'=4y-1$$ Setting $h=0.05$ in equation $y'=4y-1$ $$y_{n+1}=y_n+0.05(4y_n-1)$$ Hence, $y_1=y_0+0.05(4y_0-1)=1+0.05(4\times1-1)=1.15$ $y_2=y_1+0.05(4y_0-1)=1.15+0.05(4\times1.15-1)=1.33$ $y_3=y_2+0.05(4y_0-1)=1.33+0.05(4\times1.33-1)=1.546$ $y_4=y_3+0.05(4y_0-1)=1.546+0.05(4\times1.546-1)=1.8052$ $y_5=y_4+0.05(4y_0-1)=1.8052+0.05(4\times1.8052-1)=2.116$ $y_6=y_5+0.05(4y_0-1)=2.116+0.05(4\times2.116-1)=2.4892$ $y_7=y_6+0.05(4y_0-1)=2.4892+0.05(4\times2.4892-1)=2.937$ $y_8=y_7+0.05(4y_0-1)=2.937+0.05(4\times2.937-1)=3.4744$ $y_9=y_8+0.05(4y_0-1)=3.4744+0.05(4\times3.4744-1)=4.119$ $y_{10}=y_9+0.05(4y_0-1)=4.119+0.05(4\times4.119-1)=4.89$ If we increase the step size to $h = 0.05$, the corresponding approximation to $y(0.5)$ becomes $y_{10}=4.89$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.