Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.2 Basic Ideas and Terminology - Problems - Page 22: 50

Answer

Proved

Work Step by Step

$xy''-(x+10)y'+10y=0$ _____($\alpha$) \[y=\sum_{k=0}^{10} \frac{1}{k!}x^k\] $y=1+\frac{1}{1!}x+\frac{1}{2!}x^2+...+\frac{1}{10!}x^{10}$ ____(1) Differentiating (1) with respect to $x$ $y'=1+\frac{2x}{2!}+\frac{3x^2}{3!}+...+\frac{10x^9}{10!}$ $y'=1+\frac{x}{1!}+\frac{x^2}{2!}+...+\frac{x^9}{9!}$ ____(2) Differentiating (2) with respect to $x$ $y''=1+\frac{2x}{2!}+...+\frac{9x^8}{9!}=1+\frac{x}{1!}+...+\frac{x^8}{8!}$__(3) $xy''=x+\frac{x^2}{1!}+...+\frac{x^9}{8!}$ ____(4) $-(x+10)y'=-(x+10)[1+\frac{x}{1!}+...+\frac{x^9}{9!}]$ $-(x+10)y'=-[x+\frac{x^2}{1!}+...+\frac{x^{10}}{9!}]-10[1+\frac{x}{1!}+...+\frac{x^9}{9!}]$ ____(5) $10y=10[1+\frac{x}{1!}+...+\frac{x^{10}}{10!}]=10[1+\frac{x}{1!}+...+\frac{x^{9}}{9!}]+\frac{x^{10}}{9!}$ _____(6) Adding (4),(5) and (6) $xy''-(x+10)y'+10y=[x+\frac{x^2}{1!}+...+\frac{x^{10}}{9!}]-[x+\frac{x^2}{1!}+...+\frac{x^{10}}{9!}]=0$ Hence $y=\sum_{k=0}^{10} \frac{1}{k!}x^k$ is solution of ($\alpha$).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.