Answer
$(x-2)^2+y^2=2^2$
Work Step by Step
We are given:
$$(x-c)^2+y^2=c^2$$
$$2(x-c)+2yy'=0$$
$$\frac{x-c}{y}=y'$$
Solve for c:
$$\frac{x+y}{2}=c$$
Then $$y'=\frac{x-\frac{x+y}{2}}{y}$$
$$y'=\frac{y^2-x^2}{2xy}$$
Since $y(2)=2$
$$(2-c)^2+2^2=c^2$$
$$C=2$$
Therefore, the equation is equal to $(x-2)^2+y^2=2^2$